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Analysis of immune checkpoint 
Drug targets and tumor 
proteotypes in non-Small cell Lung 
cancer
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New therapeutics targeting immune checkpoint proteins have significantly advanced treatment of 
non-small cell lung cancer (nScLc), but protein level quantitation of drug targets presents a critical 
problem. We used multiplexed, targeted mass spectrometry (MS) to quantify immunotherapy target 
proteins PD-1, PD-L1, PD-L2, IDO1, LAG3, TIM3, ICOSLG, VISTA, GITR, and CD40 in formalin-fixed, 
paraffin-embedded (FFPE) NSCLC specimens. Immunohistochemistry (IHC) and MS measurements 
for PD-L1 were weakly correlated, but IHC did not distinguish protein abundance differences detected 
by MS. PD-L2 abundance exceeded PD-L1 in over half the specimens and the drug target proteins all 
displayed different abundance patterns. mRNA correlated with protein abundance only for PD-1, PD-
L1, and IDO1 and tumor mutation burden did not predict abundance of any protein targets. Global 
proteome analyses identified distinct proteotypes associated with high PD-L1-expressing and high 
IDO1-expressing NSCLC. MS quantification of multiple drug targets and tissue proteotypes can improve 
clinical evaluation of immunotherapies for nScLc.

New drugs directed at immune checkpoint proteins and their co-regulators have dramatically advanced oncology 
therapeutics. Antibody inhibitors of PD-1 (PDCD1) and PD-L1 (CD274) have become first-line therapeutics for 
a growing list of cancers, including non-small cell lung cancer (NSCLC)1–6. Despite dramatic, durable responses 
in some patients, approximately 36–55% of NSCLC patients without driver alterations fail to respond to either 
immune checkpoint monotherapies or combinations with chemotherapy7. This challenge has led to exploration 
of combination therapies directed against other immune checkpoints and other oncology targets8,9.

However, the large number of validated drug targets and the complexity of their interactions presents a sub-
stantial challenge in systematic development of new therapeutics and therapeutic combinations. In NSCLC, 
clinical trials are evaluating drugs targeting multiple immune checkpoint proteins PD-1, PD-L1, LAG3, TIM3 
(HAVCR2), VISTA (VSIR), CD40, and GITR (TNFRSF18), as well as combinations of immune checkpoint 
inhibitors and other targets. For example, multiple trials are evaluating the PD-1 inhibitor pembrolizumab in 
combination with antibodies against LAG3 (NCT03516981; NCT02720068), RORC (NCT03396497), CTLA4 
(NCT03516981), with small molecule inhibitors of JAK1 (NCT03425006), EGFR (NCT02364609), MEK1/2 
(NCT03299088), PIK3CD (NCT03257722) and IDO1 (NCT03343613; NCT03322540), and with vaccines target-
ing MUC1/CEA (NCT02840994) or patient-specific tumor antigens (NCT03380871). The success of combination 
therapies will depend in large part on understanding the relationships between drug target protein abundances 
and tumor phenotypes. Quantitative verification of drug targets in tumor tissues is an underappreciated and 
unmet need in therapeutic development.

Analysis of drug protein targets in tissues has been done largely by immunochemical methods, particularly 
immunohistochemistry (IHC)10. IHC was developed as a qualitative tool to facilitate interpretation of H&E 
stained specimens and its greatest utility is in capturing the spatial relationships between protein expression and 
cell or tissue morphology. However, the application of IHC as a quantitative protein measurement technique is 
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constrained by limitations of the platform. IHC assays based on chromogenic detection display limited dynamic 
range and multiplexing capacity11. The number of proteins that can be detected in a single tissue section by IHC is 
limited, even with the use of multiplexed staining approaches. Lack of availability of specific antibodies precludes 
analysis of many proteins by IHC. Finally, IHC antibody detection of some proteins, such as PD-L1 declines with 
time during slide storage12,13.

Analysis of mRNA transcripts is widely used as an indicator of gene expression and mRNA expression sig-
natures themselves have established utility as diagnostics14. However, mRNA expression is not necessarily a reli-
able surrogate for protein abundance. Combined proteomic/genomic analyses demonstrate that mRNA levels 
do not predict abundance of the corresponding proteins across cohorts of colon, ovarian and breast tumor tis-
sues15–18. mRNA/protein correlations vary dramatically with gene functions and ontologies and comparison of 
mRNA and protein co-expression networks in these studies revealed that protein co-expression networks display 
greater functional coherence, defined as fidelity to annotated gene ontologies shared by co-expressed mRNAs or 
proteins19.

New mass spectrometry (MS) platforms enable deep quantitative analysis of cell and tissue proteomes. The 
integration of a proteome data layer with genomic, transcriptomic and other omic data enables proteogenomics, 
which affords a comprehensive view of the translation of biological information from gene to phenotype20,21. 
Global MS analysis generates a large inventory of identified proteins and enables quantitative estimates of dif-
ferences in protein abundances across multiple samples. Targeted MS analysis affords more sensitive and precise 
measurement of a specific set of protein targets. Of particular importance for the analysis of clinical tissue speci-
mens is the ability of MS to analyze proteins from formalin-fixed paraffin-embedded (FFPE) tissue specimens22,23. 
A key limitation of MS methods for drug target quantitation is that sample processing does not preserve protein 
localization in tissue components. Moreover, due to the relatively recent emergence of protein MS platforms, the 
clinical impact of MS-based protein biomarkers remains largely untested.

We combined targeted MS of immune checkpoint proteins and global MS to analyze FFPE specimens from 
a set of 46 NSCLCs, which we also analyzed by RNA-Seq, DNA sequencing to analyze tumor mutation bur-
den (TMB) and IHC. The targeted assays measured PD-1, PD-L1, PD-L2 (PDCD1LG2), IDO1, LAG3, TIM3, 
ICOSLG, VISTA, GITR and CD40. Comparison of the datasets demonstrates the unique value of MS measure-
ments for protein level analysis of drug targets and their associated proteotypes.

Results
Targeted MS, mRNA, IHC and TMB analysis of PD-1, PD-L1 and IDO1 in 46 NSCLC FFPE spec-
imens. We used parallel reaction monitoring (PRM) MS to perform targeted quantitative analysis of PD-1, 
PD-L1 and IDO1 in FFPE sections from 46 NSCLC specimens, for which we also generated RNA-Seq data 
(Table S1; Supplementary Dataset 1). PD-1 protein was detected by MS in 27 of the 46 tumors analyzed and 
mRNA was measured in 43 tumors. PD-1 protein and mRNA were weakly correlated (r2 = 0.1658; p = 0.0055) 
(Fig. 1A). PD-L1 protein was detected in 40 tumors and was correlated with mRNA abundance (r2 = 0.7040; 
p < 0.0001) (Fig. 1B). PD-L1 protein measurements by MS and IHC (measured as Tumor Proportion Score (TPS)) 
were weakly, but significantly correlated across the dataset (r2 = 0.4412; p < 0.0001) (Fig. 1C; Table S2). Tumors 
with > 50% PD-L1 TPS—a cutoff for clinical use of pembrolizumab—contained PD-L1 across the entire range of 
abundances measured by MS. At MS protein abundances between 0.2 and 0.5 fmol/μg, TPS yielded values rang-
ing from zero to 95%. IDO1 was detected in 26 tumors and was correlated with mRNA abundance (r2 = 0.7390; 
p < 0.0001) (Fig. 1D). TMB, as measured in mutations/Mb varied by approximately 200-fold (Table S3), but was 
not correlated with abundance of PD-1, PD-L1 or IDO1 proteins (Fig. S1).

Targeted MS, mRNA and TMB analysis of PD-L2, LAG3, TIM3, ICOSLG, VISTA, GITR, and CD40 
in 20 NSCLC FFPE specimens. We analyzed a 20-specimen sub-cohort for six additional immune check-
point proteins by targeted MS and RNA-Seq (Table S4). PD-L2 was detected in 19 of 20 tumors of this sub-cohort 
and was not correlated with PD-L2 mRNA abundance (r2 = 0.0478; p = 0.1541) (Fig. S2). PD-L2 and PD-L1 
protein were co-expressed in 14 tumors and PD-L2 abundance exceeded that of PD-L1 in 15 tumors (Fig. 2A). 
LAG3, TIM3, ICOSLG, VISTA, GITR and CD40 were all detected in a majority of the 20 tumor subcohort over an 
abundance range between 10- and 40-fold (Fig. 2B; Table S4). Protein abundance was not significantly correlated 
with mRNA abundance for any of these proteins (Fig. S2). TMB varied by approximately 200-fold in the 20-tumor 
sub-cohort (Table S3) and was not correlated with abundance of any of these proteins (Fig. S1).

Global proteome analysis of 26 NSCLC FFPE specimens. We performed a global proteomic analysis 
of a 26-tumor subcohort, of which 13 were squamous cell carcinomas, 11 were adenocarcinomas, and one each 
were described as “carcinoma” (unclassified) or “pleomorphic carcinoma” (Table S5). The global analysis yielded 
1.28 M filtered MS/MS spectra mapping to 68,301 distinct peptides at a maximum Q value of 0.01. With a thresh-
old of two distinct peptide identifications per protein, the data identified 12,301 protein groups at a protein false 
discovery rate of 3.43%. Spectral count data are presented in Table S6. Because we had performed targeted MS 
measurements for PD-L1 and IDO1 in all 26 samples, we asked how global proteotypes intrinsically differed in 
immune checkpoint inhibitor naïve NSCLC as a function of expression of these two drug targets.

Sorting of the NSCLC samples revealed global protein abundance differences based on MS PD-L1 abun-
dance (Fig. 3A). Application of gene set enrichment analysis (GSEA) identified multiple hallmark gene sets 
from the Molecular Signatures Database (MSigDB) (http://software.broadinstitute.org/gsea/msigdb/collections.
jsp) with significant enrichment for proteins at higher or lower abundance in concert with PD-L1 level (Fig. 3B; 
Supplementary Dataset 2). Among pathways most significantly enriched for proteins with elevated abundance 
in higher PD-L1 expressing NSCLC are Myc targets (variant 1) (Fig. 3C), Myc targets (variant 2), G2M check-
point and E2F targets. Proteins enriched for Myc variants 1 and 2 and E2F targets include diverse participants in 
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transcriptional regulation, RNA splicing, processing and transport, ribonucleoproteins, RNA helicases, transla-
tional regulators, ribosome and proteasome components.

Sorting of the same global proteome dataset based on MS IDO1 abundance identified an entirely different set 
of proteotypes (Fig. 4; Supplementary Dataset 3). Pathways most significantly enriched in high IDO1 expressing 
NSCLC include interferon alpha- and gamma-responses, allograft rejection and IL6 STAT3 signaling during 
acute phase response. This group of pathways collectively include the MHC1-antigen processing proteins TAP1, 
TAP2 and TAPBP, as well as MHC1 component proteins HLA-A, HLA-B, HLA-C, HLA-G and B2M. These path-
ways also share the transcriptional regulator IRF9 and the tryptophan tRNA synthetase WARS.

Discussion
The diversity of molecular targets for immunotherapies in NSCLC presents an opportunity to develop new thera-
peutic combinations, which would target key regulatory proteins with complementary roles at the tumor-immune 
interface. Susceptibility to a drug combination would require co-expression of protein targets at levels where 
inhibition by both drugs would functionally impact the tumor-immune system24. Drug target abundance meas-
urements thus are critical to the success of this strategy. Here we demonstrate that targeted MS quantifies mul-
tiple immunotherapy drug targets simultaneously in archival FFPE samples. We also demonstrate that precise 
targeted measurements of immune checkpoint drug targets can be combined with global proteotypes to identify 
target-associated pathways, which provide insight into the underlying biology associated with expression of spe-
cific drug targets.

The most widely used immune checkpoint measurement is IHC analysis of PD-L1. We used the FDA-approved 
PD-L1 IHC 22C3 pharmDx assay to perform PD-L1 IHC analysis of the full 46 sample cohort and compared 
these data with MS measurements (Fig. 1C). Although IHC and MS PD-L1 measurements were correlated over-
all, they were strongly discordant across the middle of the MS abundance range. For MS protein values between 
0.2 and 0.5 fmol/μg protein, IHC TPS values ranged from 0–95%. This result underscores fundamental differ-
ences between IHC and MS measurements. Whereas MS measures a molar quantity of protein, TPS represents a 
percentage of tumor cells observed to have membranous staining intensity visible at 20x or lower power magnifi-
cation. Cells with very weak, barely visible staining are scored equally compared to cells with much greater inten-
sity. Similarly, samples with zero values for TPS may have discernable staining that simply does not exceed the 
threshold, is non-membranous or is localized to non-tumor cells, such as macrophages or dendritic cells. Thus, 

Figure 1. Correlation of MS protein with mRNA expression for PD-1 (A), PD-L1 (B) and IDO1 (D) in the 
46 sample NSCLC cohort. MS protein is measured in fmol/mg tissue protein, whereas mRNA expression is 
expressed as reads per million mapped reads (RPM). Panel C depicts correlation of PD-L1 MS protein with TPS 
scoring for PD-L1 IHC with the 22C3 antibody.
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the application of thresholds and TPS in IHC poorly reflects actual PD-L1 content. Moreover, modifications of 
PD-L1 protein, such as N-glycosylation and prolonged storage of FFPE sections may affect detection in IHC13,23.

PD-L1 measurements alone provide an incomplete representation of the potential for PD-1-dependent regula-
tion of T-cells, as PD-L2 may also drive PD-1-dependent T-cell downregulation. Although IHC assays for PD-L2 
recently have been reported25–27, PD-L2 is seldom assessed in solid tumors. PD-L2 positive status assessed by IHC 
has been reported to be an independent predictor of response to pembrolizumab in head and neck squamous car-
cinoma27. Matsubara et al. reported that 44.1% of tumors from a 211 patient cohort were PD-L2 positive at a TPS 
threshold of >50%, whereas only 18% were PD-L1 positive at >50% TPS25. Moreover, they found increasing per-
centages of PD-L2 positive tumors as the TPS threshold was gradually reduced, such that all tumors were PD-L2 
positive at the 1% threshold. The analyses by Matsubara et al. at the >50% threshold are consistent with our 
observation that PD-L2 abundance exceeded PD-L1 in 15 of 20 NSCLC in the subcohort we analyzed. However, 
their data suggest—and our data confirm—that PD-L2 abundance, like PD-L1 abundance is a continuous varia-
ble, which can be reliably measured by MS, but not by IHC.

IHC is a powerful tool for qualitative assessment of the presence and cellular localization of proteins. However, 
as a predominantly qualitative platform, it is not optimal for situations where a more quantitative approach is 
desired. Inter-observer variability of PD-L1 expression interpretation is widely acknowledged, particularly when 
using anything other than strict percentage cut-offs28,29. Lack of concordant abundance measurements generated 
with different PD-L1 clones combines with inter-observer variability and inherent limitations of quantitative 

Figure 2. (A) Abundance of PD-L1 and PD-L2 MS protein in the 20 sample NSCLC subcohort. (B) Heatmap 
representation of relative abundance of PD-1, PD-L1, IDO1, PD-L2, LAG3, TIM3, ICOSLG, GITR, VISTA and 
CD40 in the 20 sample NSCLC subcohort. Values are normalized within rows as indicated by the color scale. 
Measured values are reported in Tables S1 and S4.
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platform to limit the utility of IHC in measuring a spectrum of protein abundance. MS provides reliable, con-
tinuous measurement of protein expression levels across the abundance range of PD-L1 and other immune 
checkpoints.

Four previous studies have assessed expression of IDO1 and PD-L1 proteins together in lung squamous cell 
carcinomas and adenocarcinomas by IHC or immunofluorescence30–33. IDO1 was expressed in 15% to 87%, 
whereas IDO1/PD-L1 co-expression ranged from 7% to 49%; the range of reported values may reflect differences 
in methods, reagents and scoring thresholds. In our analyses, 52% of samples contained MS-detectable PD-L1 
and IDO1, whereas only 15% expressed both proteins at levels above the average for the cohort.

mRNA measurements are widely used in tissue analysis—including FFPE tissues—but our data indicate 
that mRNA does not reliably predict abundance of immune checkpoint proteins. Only PD-1, PD-L1 and IDO1 

Figure 3. Global proteotype associated with high PD-L1 abundance in 26 sample NSCLC subcohort. (A) 
Highest abundance proteins in NSCLC global analyses as a function of PD-L1 MS protein level. (B) Significantly 
enriched Hallmark 50 pathways associated with PD-L1 MS protein level by GSEA. (C) Enrichment plot for 
Myc targets (variant 1) depicting enrichment score (upper panel) versus ranked abundance (lower panel) for all 
pathway proteins (depicted as tick marks) quantified in the global dataset.
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demonstrated correlation of protein and mRNA abundance. Even though levels of PD-1, PD-L1 and IDO1 
mRNAs did correlate with their protein abundance across the sample set, mRNA does not necessarily repre-
sent the relative abundance of these proteins within individual samples. Thus, direct protein measurements are 
required to measure actual protein expression ratios in tissues.

TMB is an investigational biomarker associated with response to immune checkpoint inhibitors in multiple 
cancers34–36. The underlying rationale linking TMB to immunotherapy response is that higher mutation load 
should drive greater neoantigen diversity and more robust immune response. TMB thus might be expected to 
correlate with PD-L1 abundance, yet our data revealed no correlation of TMB with PD-L1 or with any of the other 
immune checkpoint proteins analyzed. This is consistent with the current understanding that TMB and PD-L1 
abundance appear to be independent predictors of response to immune checkpoint therapeutics36,37.

Figure 4. Global proteotype associated with high IDO1 abundance in 26 sample NSCLC subcohort. (A) 
Highest abundance proteins in NSCLC global analyses as a function of IDO1 MS protein level. (B) Significantly 
enriched Hallmark 50 pathways associated with IDO1 MS protein level by GSEA. (C) Enrichment plot for 
interferon alpha response depicting enrichment score (upper panel) versus ranked abundance (lower panel) for 
all pathway proteins quantified in the global dataset.
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We performed global proteome analyses of a 26 sample sub-cohort to generate deep inventories, which 
recently have been demonstrated to provide new understanding of how genomic abnormalities in cancer trans-
late to phenotypes via proteins15–18. Here we used GSEA38 based on targeted measurements of PD-L1 and IDO1 to 
identify proteotypes associated with high expression of these drug targets. The data revealed that high PD-L1 and 
high IDO1 proteotypes are distinctly different. High PD-L1 abundance was associated with Myc-driven features, 
consistent with a previous report that high PD-L1 IHC staining correlated with Myc overexpression, primarily 
in squamous cell carcinomas, rather than in adenocarcinomas39. In our 26 sample subcohort subjected to global 
proteome analysis, 8 of the 13 samples with highest PD-L1 abundance were squamous cell carcinomas.

GSEA revealed a distinctly different proteotype for NSCLC expressing high levels of IDO1. IDO1 is widely 
understood to inhibit T-cell function by metabolizing tryptophan to kynurenine, thereby restricting availability 
of an essential amino acid for protein synthesis and generating a ligand for AhR-mediated induction of regulatory 
T-cells40. However, IDO1 exhibits multiple effects on immune function that appear to be independent of its cat-
alytic activity41. High IDO1 expressing NSCLC displayed elevated expression of proteins mapping to interferon 
alpha- and gamma-responses, allograft rejection and IL6 STAT3 signaling during acute phase response. These 
proteotype features confirm a previously reported transcript expression pattern associated with T-cell medi-
ated immune responses, including transplant rejection, ulcerative colitis and multiple sclerosis42. Interestingly, 
MHC presentation of peptide sequences derived from the IDO1 protein itself may contribute to immunogenicity 
associated with this gene expression program43. Distinct global proteotypes for high-PD-L1 versus high-IDO1 
expressing NSCLC could merit exploration in retrospective analysis of archival FFPE specimens from completed 
combination trials with disappointing or ambiguous outcomes, such as the recent ECHO-202/KEYNOTE-307 
phase 3 trial of pembrolizumab and epacadostat in melanoma44. Proteotype information may reveal previously 
unidentified protein pathway characteristics associated with response to drug combinations.

Our data demonstrate the feasibility of multiplexed MS measurements to quantify protein expression of 
immunotherapy targets and further demonstrate the superiority of MS to other technologies for quantitative 
protein measurements. Robust, MS-based multiplexed quantitative measurements can advance tissue protein 
analysis much as oligonucleotide arrays, RNA-Seq and reverse transcriptase polymerase chain reaction (RT-PCR) 
advanced the field of gene expression and will extend our understanding of the proteomic landscape. Although 
MS analyses cannot provide spatial relationships between targets and tissue cellularity, a quantitative protein data 
layer nevertheless provides unique information that complements other data on tissues. Most importantly, MS 
provides a systematic approach to quantitatively assess drug target abundance and co-expression, which will be 
essential to successful design and clinical evaluation of combination therapeutics.

Methods
tissue specimens and immunohistochemistry. FFPE tissue blocks of primary, immune checkpoint 
inhibitor naïve NSCLC tissue were commercially acquired from iSpecimen (Lexington, MA, USA) and Indivumed 
(Frederick, MD, USA). Vendor source and tissue diagnosis are provided in Table S5. Microtomy was performed 
immediately prior to experiment initiation. Tissue sections were cut at 5 µm thickness and allowed to dry at room 
temperature overnight. IHC staining for PD-L1 was performed using the PD-L1 IHC 22C3 pharmDx kit (Agilent; 
Santa Clara, CA, USA) according to manufacturer instructions. Expression of PD-L1 was assessed by qualified 
pathologists (AH, AMG) trained and experienced in its interpretation in accordance with established guidelines.

nucleic acid isolation and sequencing. Four 10 µm thickness paraffin curls were obtained from each 
FFPE specimen. Total RNA was extracted from two curls with RNeasy FFPE (Qiagen, Germantown, MD), and 
quantity was assessed using a Qubit fluorometer (ThermoFisher Scientific, Waltham, MA). RT was performed 
using 30 ng of RNA with the SuperScript VILO cDNA Synthesis kit (ThermoFisher Scientific). cDNA librar-
ies were prepared with the Oncomine Immune Response Research Assay and Chef-Ready Kit (ThermoFisher 
Scientific, Cat. No. A32928) reagents on the Ion Chef instrument (ThermoFisher Scientific). Sequencing was 
performed on 540 chips on the Ion Torrent S5XL (ThermoFisher Scientific). Raw FastQ files were quality- and 
adapter-trimmed using cutadapt (cutadapt-1.9.1) and aligned using GSNAP (v2013-11-27, command line param-
eters -B 5 -A sam -N 1 -t 8 -s splicesites–quality-protocol = sanger–gunzip–sam-multiple-primaries–maxsearch 
= 1000–npaths = 100) to build 37.p5 of the human genome. Counts were generated using a custom perl script 
and normalized to reads per million (RPM). For DNA extraction, QIAamp DNA FFPE Tissue Kit was used 
(Qiagen) with sample prepared from two curls. Quantity was assessed using a Qubit fluorometer. DNA (30 ng) 
was treated with uracil DNA glycosylase for 2 minutes at 37 °C and then for 10 minutes at 50 °C before input into 
the Oncomine Tumor Mutation Load Assay (ThermoFisher Scientific). Library preparation and templating were 
performed on the Ion Chef and sequencing was done on the Ion Torrent S5XL using 550 chips. Results were 
assessed using the associated Ion Reporter (ThermoFisher Scientific, version 5.10) workflow “w2.0 - DNA - Single 
Sample”. Output data are represented as mutations/Mb.

MS analysis of ffpe specimens. Tissue sections were scraped from FFPE sections, deparaffinized, 
and rehydrated as described previously23. Protein concentration in lysates was measured using the BCA assay 
(ThermoFisher Scientific) and 100 μg was taken for reduction, alkylation and tryptic digestion23. A mixture of 50 
fmol each of the stable isotope labeled peptide standards for PD-1, PD-L1, PD-L2, LAG3, IDO1, TIM3, ICOSLG, 
VISTA, GITR and CD40 (the target sequences are provided in Table S7). Tryptic peptide digests were fractionated 
by basic reverse phase liquid chromatography with disposable spin columns (Pierce High pH Reversed-Phase 
Peptide Fractionation Kit, Thermo Scientific, Rockford, IL, USA) according to the manufacturer’s instructions. 
Fractionation of labeled peptide standards spiked into a bovine albumin tryptic digest followed by MS analysis 
identified the fractions in which the peptides eluted. This information enabled selection of the sample fractions 
to analyze by targeted MS.
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Targeted MS analyses were adapted from our previously reported method23 and were performed on an 
Orbitrap Fusion Lumos Tribrid instrument (Thermo Scientific, Bremen, Germany) equipped with an Easy nLC™ 
1200 liquid chromatograph and a Nanospray Flex ion source (Thermo Scientific, San Jose, CA). Reverse phase 
liquid chromatography was done with a PepMap RSLC C18-3 micron column, 75 micron x 15 cm, eluted at 250 
nL/min with a mobile phase gradient consisting of solvent A (0.1% aqueous formic acid) and solvent B [(0.1% 
formic acid in water/acetonitrile (1:4, v/v)]. The mobile phase was initially 5% B and then programmed to 20% 
B over 18 min, to 35% B over 14 min and finally to 95% B over 5 min before recycling to starting composition.

Targeted MS analysis was done by parallel reaction monitoring on the Lumos23. The acquisition method con-
sisted of a full scan selected ion monitoring event followed by targeted MS2 scans as triggered by a scheduled 
inclusion list, with a 5 min retention time window containing the precursor m/z values. Retention times were 
determined from prior analyses of synthetic peptide standards. The MS1 scan was collected at a resolution of 
30,000, an automatic gain control (AGC) target value of 5e4, and a scan range from m/z 350–1000. MS1 data were 
recorded in profile mode. The MS1 scan was followed by targeted MS2 collision induced dissociation scans at a 
resolution of 30,000, an AGC target value of 5e4, 1.6 m/z isolation window, activation Q of 0.25 and an optimized 
collision energy for each target of 30%. MS2 data were recorded in profile mode. Parallel reaction monitoring 
transitions were extracted from raw datafiles and analyzed with Skyline45. Peptide peak areas were calculated as 
the sum of the three most abundant transitions. Quantification required at least two co-eluting transitions with 
the correct signal intensity and with mass accuracy within 5 ppm. Unlabeled peptides with only one observed 
transition were assigned values of zero. Peptide abundance was calculated from the ratio of peak area for the unla-
beled endogenous peptide to peak area and spike amount for the labeled internal standard.

Global proteome analyses were performed on high pH reverse phase fractionated tryptic digests of a subset of 
the same samples with a Lumos instrument equipped with a Waters NanoAcquity system. Peptides were loaded 
on a trapping column and eluted over a 75μm analytical column at 350nL min−1. Both columns were packed 
with Luna C18 resin (Phenomenex, Torrance, CA). The mass spectrometer was operated in data dependent HCD 
mode, with MS and MS/MS performed in the Orbitrap at 60,000 FWHM and 15,000 FWHM resolution, respec-
tively. The instrument was run with a 3 s cycle for MS and MS/MS. The advanced peak determination algorithm 
was enabled. Tandem MS scans were acquired as centroided data. Peptide sequence identification from tandem 
mass spectra was done by database search against the human RefSeq V78 database with the MS-GF + search 
engine46. Peptide spectrum matches were filtered using IDPicker ver. 3.147. Peptide spectrum matches were per-
formed with an FDR threshold of 1% and required at least 2 distinct peptide identifications per protein identifica-
tion. Spectral count data were subjected to global normalization and log transformation and differential protein 
abundance was represented by z-score distribution. Proteins with differential abundance as a function of PD-L1 
or IDO1 measurements mapped to multiple pathways and molecular functions, as determined by GSEA against 
the Hallmark gene set collection of the Molecular Signatures Database38 using WebGestalt48.

Data availability
Global MS data are available through Proteome eXchange Accession MSV000085049 at ftp://massive.ucsd.
edu/MSV000085049/. Targeted MS data are available through PanoramaWeb.org at https://panoramaweb.org/
hULkB7.url.
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